What types of gas are used in light bulbs and how do their effects differ?
The glass envelope of an incandescent bulb can’t contain air because tungsten is flammable when hot and would burn up if there were oxygen present around it. One of Thomas Edison’s main contributions to the development of such bulbs was learning how to extract all the air from the bulb. But a bulb that contains no gas won’t work well because tungsten sublimes at high temperatures—its atoms evaporate directly from solid to gas. If there were no gas in the bulb, every tungsten atom that left the filament would fly unimpeded all the way to the glass wall of the bulb and then stick there forever. While there are some incandescent bulbs that operate with a vacuum inside, most common incandescent lamps contain a small amount of argon and nitrogen gases. Argon and nitrogen are chemically inert, so that the tungsten filament can’t burn in the argon and nitrogen, and each argon atom or nitrogen molecule is massive enough that when a tungsten atom that’s trying to leave the filament hits it, tha