Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

Why isn it obvious that a regular dodecahedron exists?

0
Posted

Why isn it obvious that a regular dodecahedron exists?

0

What is wrong with the following argument for the existence of a regular dodecahedron, an argument which is supposed to describe what one actually does when making one out of cardboard? Draw a regular pentagon in the plane, and surround it by five further regular pentagons of the same size, each one sharing a different edge with the original pentagon. Now fold these upwards, all by the same angle, until they just touch each other, so that you have a sort of cup. The top of this cup consists of ten edges, two for each of the five further pentagons, that zigzag round roughly in a circle. Let us label the original pentagon A and the five subsequent ones B,C,D,E and F, ordered cyclically. The upper corners of the zigzag make an angle of exactly 108, the angle of a regular pentagon, since each one is formed by two edges of one of B,C,D,E or F. I claim that the same is true for the lower corners. This can be seen as follows. Consider the corner of the zigzag at the top of the edge e shared b

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.

Experts123