Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

Why is Static Electricity invisible?

electricity invisible static
0
Posted

Why is Static Electricity invisible?

0

Whenever we create “static electricity” (whenever we create a “charge-imbalance”), the imbalance of charge is very small. Compared to the amount of electric charge already inside everyday matter, the imbalance is too small to make a visible difference. Everyday objects already contain many coulombs of cancelled-out charge in each cubic centimeter of their substance. We could create a visible change if We could add or remove a coulomb’s worth of charge. However, a typical imbalance of charge is incredibly tiny. For example, rubbing a balloon upon your head involves millionths of millionths of coulombs (a decimal point with twelve zeros.) It’s quite literally like a teaspoon of water added or subtracted from an ocean. Pouring a teaspoon of water into the ocean does not make the ocean look different. And if you rub a balloon on your hair, the surface of the balloon doesn’t look any different. Here’s a different way to explain it.

0

Whenever we create “static electricity” (whenever we create a “charge-imbalance”), the imbalance of charge is very small. Compared to the amount of electric charge already inside everyday matter, the imbalance is too small to make a visible difference. Everyday objects already contain many coulombs of cancelled-out charge in each cubic centimeter of their substance. We could create a visible change if We could add or remove a coulomb’s worth of charge. However, a typical imbalance of charge is incredibly tiny. For example, rubbing a balloon upon your head involves millionths of millionths of coulombs (a decimal point with twelve zeros.) It’s quite literally like a teaspoon of water added or subtracted from an ocean. Pouring a teaspoon of water into the ocean does not make the ocean look different. And if you rub a balloon on your hair, the surface of the balloon doesn’t look any different. Here’s a different way to explain it. Suppose we rub some hair upon some styrofoam under low-humi

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.

Experts123