Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

Why is Fluorescence usually emitted at longer wavelength than the exciting light?

0
10 Posted

Why is Fluorescence usually emitted at longer wavelength than the exciting light?

0
10

Most molecules in the ground state are in the lowest vibrational energy level. A photon can be absorbed if it provides at least enough energy to raise the ground state to the lowest vibrational level of the excited state. A slightly more energetic photon might excite the molecule to a vibrationally excited level of the excited state, but this will lose excess vibrational energy in picoseconds. Photons of still higher energy might raise the molecule to higher electronically excited states, but in almost all cases these upper states either cause decomposition or very rapidly lose energy giving rise to the usual excited singlet state. If a molecule is in an isolated environment, such as in a gas phase, then the fluorescence is emitted from the lowest vibrational level of the excited state to the ground state and its vibrationally excited levels. This emission has a spectrum which is a mirror image of the absorption spectrum. Where emission is excited by a narrow spectral souce such as a l

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.

Experts123