Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

Why does Webb have a segmented, unfolding primary mirror?

0
Posted

Why does Webb have a segmented, unfolding primary mirror?

0

Webb needs to have an unfolding mirror because the mirror is so large that it otherwise cannot fit in the launch shroud of currently available rockets. The mirror has to be large in order to see the faint light from the first star-forming regions and to see very small details at infrared wavelengths. Designing, building and operating a mirror that unfolds is one of the major technological developments of Webb. Unfolding mirrors will be necessary for future missions requiring even larger mirrors, and will find application in other scientific, civil and military space missions. • How sharp are the images of Webb going to be? The sharpness of images is what astronomers call angular resolution. Webb will have an angular resolution of somewhat better than 0.1 arc-seconds at a wavelength of 2 micrometers (one degree = 60 arc-minutes = 3600 arc-seconds). Seeing at a resolution of 0.1 arc-second means that Webb could see details the size of a US penny at a distance of about 24 miles (40 km), o

0

Webb needs to have an unfolding mirror because the mirror is so large that it otherwise cannot fit in the launch shroud of currently available rockets. The mirror has to be large in order to see the faint light from the first star-forming regions and to see very small details at infrared wavelengths. Designing, building and operating a mirror that unfolds is one of the major technological developments of Webb. Unfolding mirrors will be necessary for future missions requiring even larger mirrors, and will find application in other scientific, civil and military space missions. • How sharp are the images of Webb going to be? The sharpness of images is what astronomers call angular resolution. Webb will have an angular resolution of somewhat better than 0.1 arc-seconds at a wavelength of 2 micrometers (one degree = 60 arc-minutes = 3600 arc-seconds). Seeing at a resolution of 0.1 arc-second means that Webb could see details the size of a US penny at a distance of about 24 miles (40 km), o

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.

Experts123