Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

Why does gravity seem to depend on the (inertial) mass?

depend gravity inertial mass
0
Posted

Why does gravity seem to depend on the (inertial) mass?

0

This is another interesting and profound question: the same quantity, mass, that appears in Newton’s equations of motion, also appears in Newton’s (or Einstein’s) law of gravitation. This is not due to a lack of imagination on Newton’s part: he thought carefully about this coincidence. Because the two are conceptually distinct, let’s separate them. The inertial mass mi is the constant of a body that appears in Newton’s combined first and second law, F = mia. It is the constant that quantifies the body’s reluctance to be accelerated. The gravitational mass mg is the constant of a body that appears in Newton’s law of gravitation, F = − GmgMg/r2. It quantifies the body’s interaction with the gravitational field. Why are they the same? Experimentally, they are the same: Newton and many others since have conducted experiments. Or rather, they are proportional, because we could consider G to include any fixed ratio mi/mg. What sort of experiment? Here’s an example: take a pendulum consisting

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.

Experts123