Where does present theory say the energy of a red shifted photon goes?
The idea that universal expansion is responsible for the red shift of intergalactic light would seem correct if light were a continuous wave. However, since a photon is a quantum of energy, and since the entire photon is presumably captured, the photon should still have the same amount of energy when the packet is fully captured even if it was stretched by universal expansion, unless of course the photon is loosing energy in transit, which it must do to not conflict with Planck’s equation. And if a photon looses energy in transit, there is no need to claim universal expansion. There is a fundamental conflict here and I would very much like to know how it is presently resolved. The only logical answer I see is the photon must loose energy traveling great distances in space. (I realize they don’t think a photon can loose energy to a vacuum, but they also don’t think a vacuum is empty.) This is not as general of question as you might like, but I cannot find the answer anywhere. Thank you