Where does cholesterol act during activation of the nicotinic acetylcholine receptor?
Why agonist-induced activation of the nicotinic acetylcholine receptor (nAcChoR) fails completely in the absence of cholesterol is unknown. Affinity-purified nAcChoRs from Torpedo reconstituted into 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine/1, 2-dioleoyl-sn-glycero-3-phosphate/steroid bilayers at mole ratios of 58:12:30 were used to distinguish between three regions of the membrane where cholesterol might act: the lipid bilayer, the lipid-protein interface, or sites within the protein itself. In the bilayer, the role of fluidity has been ruled out and certain neutral lipids can substitute for cholesterol [C. Sunshine, M.G. McNamee, Biochim. Biophys. Acta 1191 (1994) 59-64]; therefore, we first tested the hypothesis that flip-flop of cholesterol across the membrane is important; a plausible mechanism might be the relief of mechanical bending strain induced by a conformation change that expands the two leaflets of the bilayer asymmetrically. Cholesterol analogs prevented from flippin