Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

When did Einstein first propose his General Theory of Relativity?

0
Posted

When did Einstein first propose his General Theory of Relativity?

0

General relativity or the general theory of relativity is the geometric theory of gravitation published by Albert Einstein in 1916. It is the current description of gravity in modern physics. It unifies special relativity and Newton’s law of universal gravitation, and describes gravity as a geometric property of space and time, or spacetime. In particular, the curvature of spacetime is directly related to the four-momentum (mass-energy and linear momentum) of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. The predictions of general relativity differ significantly from those of classical physics, especially concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Examples of such differences include gravitational time dilation, the gravitational redshift of light, and the gravitational time delay. General relativity’s predictio

0

After 1905, Einstein continued working in all three of his works in the 1905 papers. He made important contributions to the quantum theory, but increasingly he sought to extend the special theory of relativity to phenomena involving acceleration. The key to an elaboration emerged in 1907 with the principle of equivalence, in which gravitational acceleration was held a priori indistinguishable from acceleration caused by mechanical forces; gravitational mass was therefore identical with inertial mass. Einstein elevated this identity, which is implicit in the work of Isaac Newton, to a guiding principle in his attempts to explain both electromagnetic and gravitational acceleration according to one set of physical laws. In 1907 he proposed that if mass were equivalent to energy, then the principle of equivalence required that gravitational mass would interact with the apparent mass of electromagnetic radiation, which includes light. By 1911, Einstein was able to make preliminary predictio

0

Einstein first proposed his General Theory of Relativity in 1915. It describes how any massive object, such as the Sun, creates gravity by bending space and time around it. Everything in that space is also bent: even rays of light. Consequently, distant light sources, behind the massive object, can appear in a different position or look brighter than they would otherwise. Sources: http://www.sciencedaily.com/releases/2009/05/090528204402.

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.

Experts123