Whats the difference between discrete random variables and continuous random variable?
A discrete random variable is one that takes on a integer value. We use discrete random variables for objects that can not be anything but a whole number: number of cars passing through a toll booth, number of students in a class, the age of students in a class, days that go by before you see rain. . .etc. etc. A continuous random variable is a variable that can take on any real value (on an interval): average volume of a soda can, days that go by before you see rain, height of students, length of a sheet of paper. You’ll notice that for continuous random variables, they are mostly measurements made of time and space, whereas discrete random variables will usually be countable objects. Another interesting difference between discrete and continuous random variables, is how we define P(X=x), and F(X=x) for discrete and continuous random variables respectively. For discrete random variables, we simply look at the probability of obtaining that single value, which can be done by looking at