What is the role of alternate splicing in antigen presentation by major histocompatibility complex class I molecules?
The expression of major histocompatibility complex (MHC) class I molecules on the cell surface is critical for recognition by cytotoxic T lymphocytes (CTL). This recognition event leads to destruction of cells displaying MHC class I-viral peptide complexes or cells displaying MHC class I-mutant peptide complexes. Before they can be transported to the cell surface, MHC class I molecules must associate with their peptide ligand in the endoplasmic reticulum (ER) of the cell. Within the ER, numerous proteins assist in the appropriate assembly and folding of MHC class I molecules. These include the heterodimeric transporter associated with antigen processing (TAP1 and TAP2), the heterodimeric chaperone-oxidoreductase complex of tapasin and ERp57 and the general ER chaperones calreticulin and calnexin. Each of these accessory proteins has a well-defined role in antigen presentation by MHC class I molecules. However, alternate splice forms of MHC class I heavy chains, TAP and tapasin, have be