What is the distinction between the big bang model and a black hole?
The standard big bang models are the Friedmann-Robertson-Walker (FRW) solutions of the gravitational field equations of general relativity. These can describe open or closed universes. All these FRW universes have a singularity at the origin of time which represents the big bang. Black holes also have singularities. Furthermore, in the case of a closed universe no light can escape which is just the common definition of a black hole. So what is the difference? The first clear difference is that the big bang singularity of the FRW models lies in the past of all events in the universe, whereas the singularity of a black hole lies in the future. The big bang is therefore more like a white hole which is the time reversal of a black hole. According to classical general relativity white holes should not exist since they cannot be created for the same (time-reversed) reasons that black holes can not be destroyed. This might not apply if they always existed. But the standard FRW big bang models