What is the definition of a parallax error?
Precise parallax measurements of distance have an associated error. However this error in the measured parallax angle does not translate directly into an error for the distance, except for relatively small errors. The reason for this is that an error toward a smaller angle results in a greater error in distance than an error toward a larger angle. However, an approximation of the distance error can be computed by \delta d = \delta \left( {1 \over p} \right) =\left| {\partial \over \partial p} \left( {1 \over p} \right) \right| \delta p ={\delta p \over p^2} where d is the distance and p is the parallax. The approximation is far more accurate for parallax errors that are small relative to the parallax than for relatively large errors.