What is Scan Velocity Modulation?
(From: Jeroen H. Stessen (Jeroen.Stessen@ehv.ce.philips.com)). Scan velocity modulation occurs around the transients in the luminance signal. The beam is sped up just before and just after the edge and it is slowed down during the edge. This makes for a sharper edge. On an alternating B/W pattern (stripes, checkerboard) you will see that the white parts get smaller and the black parts get whiter. This geometry error is a side-effect. Some say that this is the main intended effect of SVM. SVM is *supposed* to be used to compensate for the spot blowup at high beam current. Peaking does not help to improve sharpness because the higher peak beam current also gives a fatter spot. SVM *can* work in that case. Unfortunately it is often misapplied, too much SVM will give a very unnatural picture, with obvious horizontal geometry errors. If applied properly, SVM can improve the picture. Unfortunately there has been a rat race, led by Japanese, suggesting that more is better. Some people will si
(From: Jeroen H. Stessen (Jeroen.Stessen@philips.com).) Scan velocity modulation occurs around the transients in the luminance signal. The beam is sped up just before and just after the edge and it is slowed down during the edge. This makes for a sharper edge. On an alternating B/W pattern (stripes, checkerboard) you will see that the white parts get smaller and the black parts get whiter. This geometry error is a side-effect. Some say that this is the main intended effect of SVM. SVM is *supposed* to be used to compensate for the spot blowup at high beam current. Peaking does not help to improve sharpness because the higher peak beam current also gives a fatter spot. SVM *can* work in that case. Unfortunately it is often misapplied, too much SVM will give a very unnatural picture, with obvious horizontal geometry errors. If applied properly, SVM can improve the picture. Unfortunately there has been a rat race, led by Japanese, suggesting that more is better. Some people will simply ad