What is cyclic voltammetry, and why is it so commonly used?
In a cyclic voltammetry experiment, as in other controlled potential experiments, a potential is applied to the system, and the faradaic current response is measured (a faradaic current is the current due to a redox reaction). The current response over a range of potentials (a potential window) is measured, starting at an initial value and varying the potential in a linear manner up to a pre-defined limiting value. At this potential (often referred to as a switching potential), the direction of the potential scan is reversed, and the same potential window is scanned in the opposite direction (hence the term cyclic). This means that, for example, species formed by oxidation on the first (forward) scan can be reduced on the second (reverse) scan. This technique is commonly used, since it provides an fast and simple method for initial characterization of a redox-active system. In addition to providing an estimate of the redox potential, it can also provide information about the rate of el