What are the issues related to UTF-8 terminal emulators?
VT100 terminal emulators accept ISO 2022 (=ECMA-35) ESC sequences in order to switch between different character sets. UTF-8 is in the sense of ISO 2022 an “other coding system” (see section 15.4 of ECMA 35). UTF-8 is outside the ISO 2022 SS2/SS3/G0/G1/G2/G3 world, so if you switch from ISO 2022 to UTF-8, all SS2/SS3/G0/G1/G2/G3 states become meaningless until you leave UTF-8 and switch back to ISO 2022. UTF-8 is a stateless encoding, i.e. a self-terminating short byte sequence determines completely which character is meant, independent of any switching state. G0 and G1 in ISO 10646-1 are those of ISO 8859-1, and G2/G3 do not exist in ISO 10646, because every character has a fixed position and no switching takes place. With UTF-8, it is not possible that your terminal remains switched to strange graphics-character mode after you accidentally dumped a binary file to it. This makes a terminal in UTF-8 mode much more robust than with ISO 2022 and it is therefore useful to have a way of lo
VT100 terminal emulators accept ISO 2022 (=ECMA-35) ESC sequences in order to switch between different character sets. UTF-8 is in the sense of ISO 2022 an “other coding system” (see section 15.4 of ECMA 35). UTF-8 is outside the ISO 2022 SS2/SS3/G0/G1/G2/G3 world, so if you switch from ISO 2022 to UTF-8, all SS2/SS3/G0/G1/G2/G3 states become meaningless until you leave UTF-8 and switch back to ISO 2022. UTF-8 is a stateless encoding, i.e. a self-terminating short byte sequence determines completely which character is meant, independent of any switching state. G0 and G1 in ISO 10646-1 are those of ISO 8859-1, and G2/G3 do not exist in ISO 10646, because every character has a fixed position and no switching takes place. With UTF-8, it is not possible that your terminal remains switched to strange graphics-character mode after you accidentally dumped a binary file to it. This makes a terminal in UTF-8 mode much more robust than with ISO 2022 and it is therefore useful to have a way of lo
VT100 terminal emulators accept ISO 2022 (=ECMA-35) ESC sequences in order to switch between different character sets. UTF-8 is in the sense of ISO 2022 an “other coding system” (see section 15.4 of ECMA 35). UTF-8 is outside the ISO 2022 SS2/SS3/G0/G1/G2/G3 world, so if you switch from ISO 2022 to UTF-8, all SS2/SS3/G0/G1/G2/G3 state becomes meaningless until you leave UTF-8 and switch back to ISO 2022. UTF-8 is a stateless encoding, i.e. a self-terminating short byte sequence determines completely which character is meant, independent of any switching state. G0 and G1 in ISO 10646-1 are those of ISO 8859-1, and G2/G3 do not exist in ISO 10646, because every character has a fixed position and no switching takes place. With UTF-8, it is not possible that your terminal remains switched to strange graphics-character mode after you accidentally dumped a binary file to it. This makes a terminal in UTF-8 mode much more robust than with ISO 2022 and it is therefore useful to have a way of lo