Should contemporary density functional theory methods be used to study the thermodynamics of radical reactions?
The performance of a variety of DFT functionals (BLYP, PBE, B3LYP, B3P86, KMLYP, B1B95, MPWPW91, MPW1B95, BB1K, MPW1K, MPWB1K, and BMK), together with the ab initio methods RHF, RMP2, and G3(MP2)-RAD, and with ONIOM methods based on combinations of these procedures, is examined for calculating the enthalpies of a range of radical reactions. The systems studied include the bond dissociation energies (BDEs) of R-X (R = CH3, CH2F, CH2OH, CH2CN, CH2Ph, CH(CH3)Ph, C(CH3)2Ph; X = H, CH3, OCH3, OH, F), RCH(Ph)-X (R = CH3, CH3CH2, CH(CH3)2, C(CH3)3, CH2F, CH2OH, CH2CN; X = H, F), R-TEMPO (R = CH3, CH2CH3, CH(CH3)2, C(CH3)3, CH2CH2CH3, CH2F, CH2OH, CH2CN, CH(CN)CH3, CH(Cl)CH3; TEMPO = 2,2,6,6,-tetramethylpiperidin-1-yloxyl) and HM1M2-X (M1, M2 = CH2CH(CH3), CH2CH(COOCH3), CH2C(CH3)(COOCH3); X = Cl, Br), the beta-scission energies of RXCH2* and RCH2CHPh* (R = CH3, CH2CH3, CH(CH3)2, C(CH3)3; X = O, S, CH2), and the enthalpies of several radical addition, ring-opening, and hydrogen- and chlorine-t