Is there a link between intermittent hypoxia-induced respiratory plasticity and obstructive sleep apnoea?
Although neuroplasticity is an important property of the respiratory motor control system, its existence has been appreciated only in recent years and, as a result, its functional significance is not completely understood. The most frequently studied models of respiratory plasticity is respiratory long-term facilitation (LTF) following acute intermittent hypoxia and enhanced LTF following chronic intermittent hypoxia. Since intermittent hypoxia is a prominent feature of sleep-disordered breathing, LTF and/or enhanced LTF may compensate for factors that predispose to sleep-disordered breathing, particularly during obstructive sleep apnoea (OSA). Long-term facilitation has been studied most frequently in rats, and exhibits interesting properties consistent with a role in stabilizing breathing during sleep. Specifically, LTF: (1) is prominent in upper airway respiratory motor activity, suggesting that it stabilizes upper airways and maintains airway patency; (2) is most prominent during s