How well is enzyme function conserved as a function of pairwise sequence identity?
Enzyme function conservation has been used to derive the threshold of sequence identity necessary to transfer function from a protein of known function to an unknown protein. Using pairwise sequence comparison, several studies suggested that when the sequence identity is above 40%, enzyme function is well conserved. In contrast, Rost argued that because of database bias, the results from such simple pairwise comparisons might be misleading. Thus, by grouping enzyme sequences into families based on sequence similarity and selecting representative sequences for comparison, he showed that enzyme function starts to diverge quickly when the sequence identity is below 70%. Here, we employ a strategy similar to Rost’s to reduce the database bias; however, we classify enzyme families based not only on sequence similarity, but also on functional similarity, i.e. sequences in each family must have the same four digits or the same first three digits of the enzyme commission (EC) number. Furthermo