How does the motility mechanism of the malaria parasite function?
Malaria is caused by plasmodia, tiny parasites that enter the human body through the saliva of a mosquito when it bites. They use active movements to enter into the bloodstream and from there to cells of the liver and finally into blood cells. A Plasmodium parasite consists of a single cell that has small motors (myosin) in its inner cell wall that are connected to the outer cell wall by movable elements (actin). Certain protein structures (TRAP, thrombospondin-related anonymous protein) are located there, with which the protozoa can adhere to the surface. The components of this motility mechanism that is essential for the parasite are known to a great extent, but the spatial and temporal dynamics of the individual components are still unclear. The “stick-slip” method Under special microscopes, the researchers observed how the sporozoites adhere to several sites on the surface via the TRAP protein and then use the short actin filaments to push their body past these adhesion points. “Th