How do magnets work?
Magnets have magnetic fields that attract items containing iron. For example, some of the substances attracted to magnets include iron, nickel, and steel. Magnets are used for a variety of purposes, ranging from attaching items to refrigerator doors and creating compasses to providing for fast roller coaster rides and converting mechanical energy into electrical energy. They are even used in some toys. Understanding how magnets work means figuring out the dynamics of a magnetic field. Consider the space that surrounds a magnet. This space is occupied by a magnetic force and is called a magnetic field. If a magnet is placed within this field, it will be acted upon by magnetic forces. A magnetic field is created as the result of moving charges. A good example of this is electric current that flows through a wire. When this occurs, there are negatively charged, subatomic particles, called electrons, moving through the wire. As these charges move, a magnetic field forms around the wire. Li
Marsha, That s an excellent question. Try the following experiment with a magnet, some needles (the plain kind used to hold stuff together as you sew it), and a screwdriver. It will help you understand the explanation. Touch a needle with a screwdriver and nothing unusual should happen (unless the screwdriver is already magnetized). Now, take some of the needles and hold them against the end of a magnet for a while (the stronger the better). After doing this, you will have turned each needle into a little magnet, and when you touch them with a screwdriver they will stick to it. Some kinds of metals (like steel that the needles are made of) are made up of billions and billions of individual atoms that each have the properties of a microscopic magnet. The atoms in steel naturally tend to get together in tiny little groups called domains, and within each domain the atoms tend to point in the same direction, which makes the domains behave like a tiny little bar magnets just like the kind y
A magnet is an object formed out of any type of material that can produce its own magnetic field. Such materials include hard magnets and soft magnets. Examples of hard magnets are neodymium magnets and refrigerator magnets which always remember the way in which they were magnetized.Examples of soft magnets are electromagnets, which can be switched on and off to change their magnetic characteristics.
Questions that often come up are, “How do magnets work?”, or, “Why is iron magnetic?”, or, “What makes a magnet?”, or, “What is the magnetic field made of?”. Those are good questions, and deserve a good answer. However, did you know that there is a lot about magnets at the atomic level that isn’t known yet? Just like with most of the other basic forces we are familiar with, such as gravity, electricity, mechanics and heat, scientists start by trying to understand how they work, what they do, are there any formulas that can be made to describe (and thus predict) their behavior so we can begin to control them, and so on. The work always starts by simple observation (that’s the fancy word for playing around with the stuff!). That’s why it’s so important to have some “hands-on” experience with magnets. Have you taken two magnets and tried to push like poles together? How far away do you start to feel the repulsion? How does the force vary with the distance between them? When the magnets ar