Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

How are Plug N Play ISA cards detected and initialized?

0
10 Posted

How are Plug N Play ISA cards detected and initialized?

0

By: Frank Durda IV In a nutshell, there a few I/O ports that all of the PnP boards respond to when the host asks if anyone is out there. So when the PnP probe routine starts, it asks if there are any PnP boards present, and all the PnP boards respond with their model # to a I/O read of the same port, so the probe routine gets a wired-OR “yes” to that question. At least one bit will be on in that reply. Then the probe code is able to cause boards with board model IDs (assigned by Microsoft/Intel) lower than X to go “off-line”. It then looks to see if any boards are still responding to the query. If the answer was 0, then there are no boards with IDs above X. Now probe asks if there are any boards below X. If so, probe knows there are boards with a model numbers below X. Probe then asks for boards greater than X-(limit/4) to go off-line. If repeats the query. By repeating this semi-binary search of IDs-in-range enough times, the probing code will eventua

0

By: Frank Durda IV In a nutshell, there a few I/O ports that all of the PnP boards respond to when the host asks if anyone is out there. So when the PnP probe routine starts, he asks if there are any PnP boards present, and all the PnP boards respond with their model # to a I/O read of the same port, so the probe routine gets a wired-OR “yes” to that question. At least one bit will be on in that reply. Then the probe code is able to cause boards with board model IDs (assigned by Microsoft/Intel) lower than X to go “off-line”. It then looks to see if any boards are still responding to the query. If the answer was “0”, then there are no boards with IDs above X. Now probe asks if there are any boards below “X”. If so, probe knows there are boards with a model numbers below X. Probe then asks for boards greater than X-(limit/4) to go off-line. If repeats the query. By repeating this semi-binary search of IDs-in-range enough times, the probing code will eventually identify all PnP b

0

By: Frank Durda IV In a nutshell, there a few I/O ports that all of the PnP boards respond to when the host asks if anyone is out there. So when the PnP probe routine starts, it asks if there are any PnP boards present, and all the PnP boards respond with their model # to a I/O read of the same port, so the probe routine gets a wired-OR “yes” to that question. At least one bit will be on in that reply. Then the probe code is able to cause boards with board model IDs (assigned by Microsoft/Intel) lower than X to go “off-line”. It then looks to see if any boards are still responding to the query. If the answer was 0, then there are no boards with IDs above X. Now probe asks if there are any boards below X. If so, probe knows there are boards with a model numbers below X. Probe then asks for boards greater than X-(limit/4) to go off-line. If repeats the query. By repeating this semi-binary search of IDs-in-range enough times, the probing code will eventually

0

By: Frank Durda IV In a nutshell, there a few I/O ports that all of the PnP boards respond to when the host asks if anyone is out there. So when the PnP probe routine starts, he asks if there are any PnP boards present, and all the PnP boards respond with their model # to a I/O read of the same port, so the probe routine gets a wired-OR “yes” to that question. At least one bit will be on in that reply. Then the probe code is able to cause boards with board model IDs (assigned by Microsoft/Intel) lower than X to go “off-line”. It then looks to see if any boards are still responding to the query. If the answer was 0, then there are no boards with IDs above X. Now probe asks if there are any boards below X. If so, probe knows there are boards with a model numbers below X. Probe then asks for boards greater than X-(limit/4) to go off-line. If repeats the query. By repeating this semi-binary search of IDs-in-range enough times, the probing code will eventua

0

By: Frank Durda IV In a nutshell, there a few I/O ports that all of the PnP boards respond to when the host asks if anyone is out there. So when the PnP probe routine starts, it asks if there are any PnP boards present, and all the PnP boards respond with their model # to a I/O read of the same port, so the probe routine gets a wired-OR “yes” to that question. At least one bit will be on in that reply. Then the probe code is able to cause boards with board model IDs (assigned by Microsoft/Intel) lower than X to go “off-line”. It then looks to see if any boards are still responding to the query. If the answer was 0, then there are no boards with IDs above X. Probe will then ask for boards below X. Finally, probe requests boards greater than X – (limit / 4) to go off-line. It then repeats this query. By repeating this semi-binary search of IDs-in-range enough times, the probing code will eventually identify all PnP boards present in a given machine with a nu

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.