Do yeast aminoacyl-tRNA synthetases exist as ‘soluble’ enzymes within the cytoplasm?.
The aminoacyl-tRNA synthetases from a crude extract of yeast were shown to bind to heparin-Ultrogel through ionic interactions, in conditions where the corresponding enzymes from Escherichia coli did not. The behaviour of purified lysyl-tRNA synthetases from yeast and E. coli was examined in detail. The native dimeric enzyme from yeast (Mr 2 × 73000) strongly interacted with immobilized heparin or tRNA, as well as with negatively charged liposomes, in conditions where the corresponding native enzyme from E. coli (Mr 2 × 65000) displayed no affinity for these supports. Moreover, the aptitude of the native enzyme from yeast to interact with polyanionic carriers was lost on proteolytic conversion to a fully active modified dimer of Mr 2 × 65500. A structural model is proposed, according to which each subunit of yeast lysyl-tRNA synthetase is composed of a functional domain similar in size to that of the prokaryotic enzyme, contiguous to a ‘binding’ domain responsible for association to ne