Do PV systems work better in hot or cold weather?
A PV module’s power output is reduced at high temperatures, but the lifetime of the PV module (estimated to be over 30 years) is not affected by normal heat. The duration and the intensity of the sunlight has a major effect on the output of a PV module, and the increase in temperature has a lesser effect on the output. A general “rule of thumb” for crystalline silicon PV modules (the most common type to date) is that the efficiency is reduced about 0.5 percent for every degree C increase in temperature. PV modules are usually rated at module temperatures of 25°C (77°F) and seem to run about 20°C over the air temperature. So on your hot day of 100°F, the module will be 120°F or 50°C, so it will have its power reduced by 12.5 percent. The design of a PV system usually takes into consideration the need to allow some “convective cooling” for the PV modules, that is, some way to passively dissipate the heat generated from the module and minimize the module temperature to increase the perfor
A PV module’s power output is reduced at high temperatures, but the lifetime of the PV module (estimated to be over 30 years) is not affected by normal heat. The duration and the intensity of the sunlight has a major effect on the output of a PV module, and the increase in temperature has a lesser effect on the output. A general “rule of thumb” for crystalline silicon PV modules (the most common type to date) is that the efficiency is reduced about 0.5 percent for every degree C increase in temperature. PV modules are usually rated at module temperatures of 25°C (77°F) and seem to run about 20°C over the air temperature. So on your hot day of 100°F, the module will be 120°F or 50°C, so it will have its power reduced by 12.5 percent.