Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

Do collagenases unwind triple-helical collagen before peptide bond hydrolysis?

0
Posted

Do collagenases unwind triple-helical collagen before peptide bond hydrolysis?

0

It has been postulated that triple-helical collagen is actively unwound by collagenases before peptide bond hydrolysis–a supposition that explains the small catalytic rate constant associated with collagenolysis. We propose an alternate model of collagen degradation that does not require active unwinding by collagenases, but instead suggests that the regions of collagen near the collagenase cleavage site can adopt either a native triple-helical or a partially unfolded conformation. In this model, collagenases preferentially bind to and stabilize partially unfolded conformers before cleaving the scissile bond. Existing experimental observations (which were previously taken to support active unwinding models) are reinterpreted using corroborative evidence from numerical simulations and found to be consistent with this framework. These data support the notion that collagen, like all other biological heteropolymers, undergoes thermal fluctuations that cause it to sample distinct structure

0

It has been postulated that triple-helical collagen is actively unwound by collagenases before peptide bond hydrolysis–a supposition that explains the small catalytic rate constant associated with collagenolysis. We propose an alternate model of collagen degradation that does not require active unwinding by collagenases, but instead suggests that the regions of collagen near the collagenase cleavage site can adopt either a native triple-helical or a partially unfolded conformation. In this model, collagenases preferentially bind to and stabilize partially unfolded conformers before cleaving the scissile bond. Existing experimental observations (which were previously taken to support active unwinding models) are reinterpreted using corroborative evidence from numerical simulations and found to be consistent with this framework. These data support the notion that collagen, like all other biological heteropolymers, undergoes thermal fluctuations that cause it to sample distinct structure

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.

Experts123