Dark Matter and the Solar Neutrino Problem: Can Particle Physics Provide a Single Solution?.
It has been known for some time that weakly interacting massive particles (WIMPS or cosmions) can simultaneously solve both the dark matter and solar neutrino problem.1 The idea is quite simple and elegant: such particles being the constituents of dark matter2 would, if sufficiently massive, acrete in the core region of the sun. As they orbit in the sun’s interior, they transfer heat from the inner to the outer regions thereby cooling the core. Lowering the core temperature (T) by only 10% is sufficient to reduce the predicted output of observable neutrinos by a factor of 3 to 4 leading to a resolution of the solar neutrino problem.3 The crucial point is that almost 80% of the observable neutrinos (which represent only 10−6 of the total neutrino output of the sun!) result from the decay 8B±8Be*+e+ve and the rate for this is very sensitive to T). On the other hand, solar models that accurately describe bulk properties of the sun such as its total luminosity, radius, mass, and surface ab