Could new discovery about a shape-shifting protein lead to a mighty morpheein bacteria fighter?
A small molecule that locks an essential enzyme in an inactive form could one day form the basis of a new class of unbeatable, species-specific antibiotics, according to researchers at Fox Chase Cancer Center. Their findings, highlighted on the cover of the June 23 issue of the journal Chemistry & Biology, take advantage of an emerging body of science regarding “morpheeins” – proteins made from individual components that are capable of spontaneously reconfiguring themselves into different shapes within living cells. The researchers discovered a small molecule, which they have named morphlock-1, binds the inactive form of a protein known as porphobilinogen synthase (PBGS), an enzyme used by nearly all forms of cellular life. The functioning form of PBGS is built from eight identical component parts – in what is called an octamer configuration – and is essential among nearly all forms of life in the processes that enable cells to use energy. The other configuration is made of six parts –
PHILADELPHIA (June 20, 2008) — A small molecule that locks an essential enzyme in an inactive form could one day form the basis of a new class of unbeatable, species-specific antibiotics, according to researchers at Fox Chase Cancer Center. Their findings, highlighted on the cover of the June 23 issue of the journal Chemistry & Biology, take advantage of an emerging body of science regarding “morpheeins” — proteins made from individual components that are capable of spontaneously reconfiguring themselves into different shapes within living cells. The researchers discovered a small molecule, which they have named morphlock-1, binds the inactive form of a protein known as porphobilinogen synthase (PBGS), an enzyme used by nearly all forms of cellular life. The functioning form of PBGS is built from eight identical component parts — in what is called an octamer configuration — and is essential among nearly all forms of life in the processes that enable cells to use energy. The other confi