Could carnosine or related structures suppress Alzheimer’s disease?
Abstract: Reactive oxygen species, reactive nitrogen species, copper and zinc ions, glycating agents and reactive aldehydes, protein cross-linking and proteolytic dysfunction may all contribute to Alzheimer’s disease (AD). Carnosine (ß-alanyl-L-histidine) is a naturally-occurring, pluripotent, homeostatic agent. The olfactory lobe is normally enriched in carnosine and zinc. Loss of olfactory function and oxidative damage to olfactory tissue are early symptoms of AD. Amyloid peptide aggregates in AD brain are enriched in zinc ions. Carnosine can chelate zinc ions. Protein oxidation and glycation are integral components of the AD pathophysiology. Carnosine can suppress amyloid-β peptide toxicity, inhibit production of oxygen free-radicals, scavenge hydroxyl radicals and reactive aldehydes, and suppress protein glycation. Glycated protein accumulates in the cerebrospinal fluid (CSF) of AD patients. Homocarnosine levels in human CSF dramatically decline with age. CSF composition and turnov