Can pathogen-induced vector fitness have an impact on human health?
The observations of Neelakanta et al. (4) underscore concepts in vector biology that are generally ignored and often misunderstood by biomedical scientists and the medical community: (a) vector ecology has its basis in biology and (b) the outcomes can weigh substantially on human infection and disease. The understanding of the former concept is best illustrated by examining endosymbionts of arthropods, such as Buchnera aphidicola, a symbiont of plant sap–feeding aphids that require the bacterium for survival because it supplies them with certain amino acids (16); Wigglesworthia spp. mutualists, which promote maternal fecundity, blood meal acquisition, and digestion in Glossina spp. tsetse flies (17); and Wolbachia spp., which infect mosquitoes and regulate iron metabolism and oxidative stress and prevent apoptosis (18). In the cases of these endosymbionts, manipulation of the host by the microbe often is neutral to the host or mutually beneficial to both microbe and host. However, for