can parasite enzymes replace host red cell glucose-6-phosphate dehydrogenase?
Plasmodium falciparum-infected human red cells possess at least two pathways for the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH): (1) the glucose-6-phosphate dehydrogenase (G6PD) pathway and (2) the glutamate dehydrogenase (GD) pathway using glutamate as a substrate. Uninfected erythrocytes lack the GD pathway. The NADPH generated can be used to reduce oxidized glutathione (GSSG), which accumulates in the presence of an oxidative stress. In red cell G6PD deficiency, this pathway is reduced or absent, and the host cells as well as the parasites within them are vulnerable to oxidant stress. In view of the presence of the GD pathway in parasitized red cells and the recent description of a parasite-derived G6PD enzyme, we have asked whether the pathways for the reduction of GSSG provided by the parasite can substitute for the host G6PD in red cells deficient in G6PD activity. We have devised a functional assay in which the reduction rate of GSSG is monitored i