Can mechanical myotonometry or electromyography be used for the prediction of intramuscular pressure?
The aim of the study was to characterize the electromechanical properties of skeletal muscle during isometric loading as well as to assess the potential of estimating intramuscular pressure by electrical and mechanical methods. Simultaneous electromyography (EMG), mechanical myotonometry (MYO, frequency and decrement of decay) and intramuscular pressure (IMP) measurements were conducted at rest and during short-term and long-term isometric contractions in patients with chronic pain in the anterior leg or dorsal forearm. The EMG amplitude and MYO(freq) accounted significantly (24-73%, p < 0.0001) for the variations in the IMP under short-term isometric loading. The IMP, EMG and MYO(freq) increased linearly with the relative muscle load (r = 0.868-0.993, p < 0.05). Mean values of EMG amplitudes at the contraction levels of 75% and 100% maximum voluntary contraction (MVC) and MYO(freq) values at all contraction levels (0-100% MVC) were higher for subjects with pathological values of IMP t