Can I use aqueous reference electrodes for non-aqueous solutions?
Aqueous reference electrodes can be used in non-aqueous solutions in many instances, but problems can arise. First, junction potentials can be quite large for non-aqueous solutions, so comparison of redox potentials between aqueous and non-aqueous solutions (and between different non-aqueous solutions) requires an internal standard. Second, salts from the electrolyte solutions can precipitate in the frit, leading to increased noise in the current response. For example, if a perchlorate salt is used in the analyte solution, and a potassium solution is used in the reference electrode, potassium perchlorate can precipitate in the frit. This problem could be decreased using sodium chloride in silver/silver chloride reference electrode, since sodium perchlorate is more soluble than potassium perchlorate. Third, since water and chloride ions can diffuse through the frit into the analyte solution (albeit slowly), aqueous reference electrodes are not suitable for water and chloride sensitive a
Aqueous reference electrodes can be used in non-aqueous solutions in many instances, but problems can arise. First, junction potentials can be quite large for non-aqueous solutions, so comparison of redox potentials between aqueous and non-aqueous solutions (and between different non-aqueous solutions) requires an internal standard. Second, salts from the electrolyte solutions can precipitate in the frit, leading to increased noise in the current response. For example, if a perchlorate salt is used in the analyte solution, and a potassium solution is used in the reference electrode, potassium perchlorate can precipitate in the frit. This problem is decreased in BAS reference electrodes by using sodium chloride in silver/silver chloride reference electrode, since sodium perchlorate is more soluble than potassium perchlorate. Third, since water and chloride ions can diffuse through the frit into the analyte solution (albeit slowly), aqueous reference electrodes are not suitable for water
Aqueous reference electrodes can be used in non-aqueous solutions in many instances, but problems can arise. First, junction potentials can be quite large for non-aqueous solutions, so comparison of redox potentials between aqueous and non-aqueous solutions (and between different non-aqueous solutions) requires an internal standard. Second, salts from the electrolyte solutions can precipitate in the frit, leading to increased noise in the current response. For example, if a perchlorate salt is used in the analyte solution, and a potassium solution is used in the reference electrode, potassium perchlorate can precipitate in the frit. This problem is decreased in BASi reference electrodes by using sodium chloride in silver/silver chloride reference electrode, since sodium perchlorate is more soluble than potassium perchlorate. Third, since water and chloride ions can diffuse through the frit into the analyte solution (albeit slowly), aqueous reference electrodes are not suitable for wate
Related Questions
- Electrolytes affect the activity coefficients of dissolved organic compounds in aqueous solutions ("salting in" and "salting out"). Is this included in the model?
- How long can I store and reuse reference standard solutions prepared for the Total Organic Carbon system suitability test?
- Can I use aqueous reference electrodes for non-aqueous solutions?