Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

Can I use aqueous reference electrodes for non-aqueous solutions?

0
Posted

Can I use aqueous reference electrodes for non-aqueous solutions?

0

Aqueous reference electrodes can be used in non-aqueous solutions in many instances, but problems can arise. First, junction potentials can be quite large for non-aqueous solutions, so comparison of redox potentials between aqueous and non-aqueous solutions (and between different non-aqueous solutions) requires an internal standard. Second, salts from the electrolyte solutions can precipitate in the frit, leading to increased noise in the current response. For example, if a perchlorate salt is used in the analyte solution, and a potassium solution is used in the reference electrode, potassium perchlorate can precipitate in the frit. This problem could be decreased using sodium chloride in silver/silver chloride reference electrode, since sodium perchlorate is more soluble than potassium perchlorate. Third, since water and chloride ions can diffuse through the frit into the analyte solution (albeit slowly), aqueous reference electrodes are not suitable for water and chloride sensitive a

0

Aqueous reference electrodes can be used in non-aqueous solutions in many instances, but problems can arise. First, junction potentials can be quite large for non-aqueous solutions, so comparison of redox potentials between aqueous and non-aqueous solutions (and between different non-aqueous solutions) requires an internal standard. Second, salts from the electrolyte solutions can precipitate in the frit, leading to increased noise in the current response. For example, if a perchlorate salt is used in the analyte solution, and a potassium solution is used in the reference electrode, potassium perchlorate can precipitate in the frit. This problem is decreased in BAS reference electrodes by using sodium chloride in silver/silver chloride reference electrode, since sodium perchlorate is more soluble than potassium perchlorate. Third, since water and chloride ions can diffuse through the frit into the analyte solution (albeit slowly), aqueous reference electrodes are not suitable for water

0

Aqueous reference electrodes can be used in non-aqueous solutions in many instances, but problems can arise. First, junction potentials can be quite large for non-aqueous solutions, so comparison of redox potentials between aqueous and non-aqueous solutions (and between different non-aqueous solutions) requires an internal standard. Second, salts from the electrolyte solutions can precipitate in the frit, leading to increased noise in the current response. For example, if a perchlorate salt is used in the analyte solution, and a potassium solution is used in the reference electrode, potassium perchlorate can precipitate in the frit. This problem is decreased in BASi reference electrodes by using sodium chloride in silver/silver chloride reference electrode, since sodium perchlorate is more soluble than potassium perchlorate. Third, since water and chloride ions can diffuse through the frit into the analyte solution (albeit slowly), aqueous reference electrodes are not suitable for wate

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.

Experts123