Can Dust Grains Formed in the Ejecta Survive and Be Injected into the Early Interstellar Medium?
We investigate the evolution of dust that formed at Population III supernova (SN) explosions and its processing through the collisions with the reverse shocks resulting from the interaction of the SN ejecta with the ambient medium. In particular, we investigate the transport of the shocked dust within the SNR and its effect on the chemical composition, the size distribution, and the total mass of dust surviving in SNRs. We find that the evolution of the reverse shock, and hence its effect on the processing of the dust, depends on the thickness of the envelope retained by the progenitor star. Furthermore, the transport and survival of the dust grains depend on their initial radius, aini, and composition: for Type II SNRs expanding into the ISM with a density of nH,0 = 1 cm-3, small grains with aini 0.05 μm are completely destroyed by sputtering in the postshock flow, while grains with aini = 0.05-0.2 μm are trapped into the dense shell behind the forward shock. Very large grains of aini