Can a Fourier-based cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?
Cascaded-systems analyses have been used successfully by many investigators to describe signal and noise transfer in quantum-based x-ray detectors in medical imaging. However, the Fourier-based linear-systems approach is only valid when assumptions of linearity and shift invariance are satisfied. Digital detectors, in which a bounded image signal is spatially integrated in discrete detector elements, are not shift invariant in their response. In addition, many detectors make use of fiber optics or structured phosphors such as CsI to pass light to a photodetector-both of which have a shift-variant response. These issues raise serious concerns regarding the validity of Fourier-based approaches for describing the signal and noise performance of these detectors. We have used a Monte Carlo approach to compare the image Wiener noise power spectrum (NPS) with that predicted using a Fourier-based approach when these assumptions fail. It is shown that excellent agreement is obtained between Mon