Are complex control signals required for human arm movement?
It has been proposed that the control signals underlying voluntary human arm movement have a “complex” nonmonotonic time-varying form, and a number of empirical findings have been offered in support of this idea. In this paper, we address three such findings using a model of two-joint arm motion based on the lambda version of the equilibrium-point hypothesis. The model includes six one- and two-joint muscles, reflexes, modeled control signals, muscle properties, and limb dynamics. First, we address the claim that “complex” equilibrium trajectories are required to account for nonmonotonic joint impedance patterns observed during multijoint movement. Using constant-rate shifts in the neurally specified equilibrium of the limb and constant cocontraction commands, we obtain patterns of predicted joint stiffness during simulated multijoint movements that match the nonmonotonic patterns reported empirically. We then use the algorithm proposed by Gomi and Kawato to compute a hypothetical equi